Search for trapped antihydrogen in ALPHA1
نویسندگان
چکیده
Antihydrogen spectroscopy promises precise tests of the symmetry of matter and antimatter, and can possibly offer new insights into the baryon asymmetry of the universe. Antihydrogen is, however, difficult to synthesize and is produced only in small quantities. The ALPHA collaboration is therefore pursuing a path towards trapping cold antihydrogen to permit the use of precision atomic physics tools to carry out comparisons of antihydrogen and hydrogen. ALPHA has addressed these challenges. Control of the plasma sizes has helped to lower the influence of the multipole field used in the neutral atom trap, and thus lowered the temperature of the created atoms. Finally, the first systematic attempt to identify trapped antihydrogen in our system is discussed. This discussion includes special techniques for fast release of the trapped antiatoms, as well as a silicon vertex detector to identify antiproton annihilations. The silicon detector reduces the background of annihilations, including background from antiprotons that can be mirror trapped in the fields of the neutral atom trap. A description of how to differentiate between these events and those resulting from trapped antihydrogen atoms is also included. PACS Nos: 25.43.+t, 34.80.Lx, 36.10.–k, 37.10.Gh Résumé : La spectroscopie de l’anti-hydrogène promet des tests précieux de la symétrie entre matière et antimatière dans l’univers. Cependant, l’anti-hydrogène est difficile à synthétiser et il n’est produit qu’en petite quantité. Le groupe de collaborateurs ALPHA poursuit donc des travaux pour capturer de l’anti-hydrogène froid afin de permettre l’utilisation d’outils précis de mesure en physique atomique pour comparer l’anti-hydrogène avec l’hydrogène. Nous montrons comment ALPHA s’est attaqué à cette tâche et comment le contrôle du volume de plasma a aidé à diminuer l’influence des champs multipolaires utilisés dans le piège pour atomes neutres et ainsi abaisser la température des atomes produits. Finalement, nous discutons le premier essai systématique pour identifier l’anti-hydrogène piégé dans notre système. Ceci inclut des techniques spéciales pour relâcher rapidement les anti-atomes piégés, ainsi qu’un détecteur au silicium pour identifier l’annihilation de l’anti-proton. Nous avons utilisé le détecteur au silicium pour réduire le fond d’annihilation, incluant celui produit par les anti-protons qui peuvent être dans le piège miroir des champs du piège à atomes neutres. Nous décrivons aussi comment nous pouvons différentier entre ces événements et ceux qui résultent des atomes d’anti-hydrogène piégés. [Traduit par la Rédaction] Received 18 July 2010. Accepted 30 August 2010. Published on the NRC Research Press Web site at cjp.nrc.ca on 21 December 2010. N. Madsen,2 W. Bertsche, E. Butler, M. Charlton, A.J. Humphries, S. Jonsell, L.V. Jørgensen, and D.P. van der Werf. Department of Physics, Swansea University, Swansea SA2 8PP, UK. G.B Andresen, P.D. Bowe, and J.S. Hangst. Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. M.D. Ashkezari and M.E. Hayden. Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. M. Baquero-Ruiz, C. Bray, S. Chapman, J. Fajans, A. Povilus, C. So, and J.S. Wurtele. Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA. C.L. Cesar and R. Lambo. Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil. T. Friesen, R. Hydomako, and R.I. Thompson. Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, Canada. M.C. Fujiwara, D.R. Gill, L. Kurchaninov, K. Olchanski, A. Olin, and J.W. Storey. TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada. W.N. Hardy and S.S. El Nasr. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. S. Menary. Department of Physics, York University, Toronto, ON M3J 1P3, Canada. P. Nolan and P. Pusa. Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK. F. Robicheaux. Department of Physics, Auburn University, Auburn, AL 36849-5311, USA. E. Sarid. Department of Physics, NRCN-Nuclear Research Center Negev, Beer Sheva, IL-84190, Israel. D.M Silveira and Y. Yamazaki. Atomic Physics Laboratory, RIKEN, Saitama 351-0198, Japan. 1This paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at École de Physique, les Houches, France, 30 May – 4 June, 2010. 2Corresponding author (e-mail: [email protected]). 7 Can. J. Phys. 89: 7–16 (2011) doi:10.1139/P10-085 Published by NRC Research Press _______________________________________________________________________________________
منابع مشابه
Search for Trapped Antihydrogen ALPHA Collaboration
We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental pa...
متن کاملDiscriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons ...
متن کاملAspects of 1S-2S spectroscopy of trapped antihydrogen atoms
Antihydrogen atoms are now routinely trapped in small numbers. One of the purposes of this effort is to make precision comparisons of the 1S-2S transition in hydrogen and antihydrogen as a precision test of the CPT theorem. We investigate, through calculations and simulations, various methods by which the 1S-2S transition may be probed with only a few trapped atoms. We consider the known constr...
متن کاملConfinement of antihydrogen for 1,000 seconds
Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter–antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critic...
متن کاملAntihydrogen trapping assisted by sympathetically cooled positrons
Antihydrogen, the bound state of an antiproton and a positron, is of interest for use in precision tests of natureʼs fundamental symmetries. Antihydrogen formed by carefully merging cold plasmas of positrons and antiprotons has recently been trapped in magnetic traps. The efficiency of trapping is strongly dependent on the temperature of the nascent antihydrogen, which, to be trapped, must have...
متن کاملTowards trapped antihydrogen
Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold anti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011